Lecture 5: modern MCMC algorithms

Ben Lambert¹ ben.lambert@some.ox.ac.uk

¹Somerville College University of Oxford

June 7, 2016

Lecture outcomes

By the end of this lecture you should:

- Understand how dependent sampling via MCMC can be used to sample from posterior distributions.
- Grasp how the concept of "effective sample size" quantifies the information cost of dependent sampling.
- Understand the basic mechanics and intuition behind Random Walk Metropolis.
- Show how the Gibbs sampler works and how it compares to Random Walk Metropolis.
- Recognise the underlying problem with Random Walk Metropolis and Gibbs.
- Recognise that Hamiltonian Monte Carlo overcomes some of the problems of Random Walk Metropolis and Gibbs.

Overall course outline

	"I appreciate the	"I understand	"l appreciate
"I know what	difficulty of exact	why we need to	the benefits of
inference is."	Bayesian inference."	do sampling."	hierarchical models."

Lecture 1	Lecture 2	Lecture 3	Lecture 4	Lecture 5	Lecture 6
"I undersi intuition Bayesian	tand the behind inference."	"I know how to critically assess a statistical model."	"I grasp why we shift from independent to dependent sampling."	e "I know modern algorith and how them."	how MCMC ms work, ı to apply
		Lec	ture 7		

- 2 Start to finish Bayesian inference
 - 3 Metropolis-Hastings
 - 4 Gibbs sampling
- 5 Hamiltonian Monte Carlo

What is independent sampling?

Definition:

"A sample drawn from a distribution that does not depend on any previous samples drawn."

Suppose I can write down the pdf for a distribution:

$$f(x) = \frac{1}{9}x^2 \tag{1}$$

where $0 \le x \le 3 \implies$ a valid probability distribution!

And we can draw this function... **Question:** doesn't this mean we can automatically sample from it?

Answer: no!

- No inbuilt command in statistical software to sample from our function.
- \implies use Rejection sampling.

Generate (x, y) pairs at random from continuous uniform.

Overlay our distribution's pdf.

Accept those x samples with a y value below pdf.

Histogram of x samples.

What is dependent sampling?

"A sampling algorithm where the next sample **depends** on the current value."

The war of independence

- Think of independent samplers as paratroopers.
- Dependent samplers (MCMC!) as infantry.

Independent samples as paratroops

Dependent samples as infantry

The winner

Independent troops/sampler! Because:

- Their aerial overview gives them a better ability to plan samples.
- They can traverse a terrain more rapidly than ground troops (dependent sampler).

The Bayesian battle winner

- In Bayesian inference the posterior distribution is too complex (aerial overview impossible) to do independent sampling.
- However we can still do dependent sampling!
- \implies Infantry wins!

Random Walk Metropolis algorithm

Question: how should we step across the terrain of the posterior to ensure we generate samples from the posterior?

Answer: use Random Walk Metropolis algorithm.

Random Walk Metropolis algorithm: definition

- Start in a random location $\theta_0 \in \Theta$.
- 2 For times t = 1...T do:
 - Propose a new location using **symmetric** jumping kernel, $\theta_{t+1} \sim J(\theta_{t+1}|\theta_t)$.
 - Calculate:

$$r = \frac{\mathsf{likelihood}(\theta_{t+1}) \times \mathsf{prior}(\theta_{t+1})}{\mathsf{likelihood}(\theta_t) \times \mathsf{prior}(\theta_t)}$$
(2)

 \implies independent of denominator!

- Generate $u \sim uniform(0, 1)$.
- If r > u we move from $\theta_t \to \theta_{t+1}$; otherwise we stay at θ_t .

Calculate ratio of likelihood \times prior at proposed to current location, and find $r \approx 0.58$.

Compare $r \approx 0.58$ with random real between 0 and 1. For example suppose we obtain u = 0.823.

Calculate ratio of likelihood \times prior at proposed to current location, and find $r\approx 1.75.$

Since r > 1 (maximum possible u) \implies we move to new location.

Since r > 1 (maximum possible u) \implies we move to new location.

Example Random Walk Metropolis: cow revisited

Question: remember the cow?

Example Random Walk Metropolis: cow revisited

Define a distribution:

$$p(r) \propto exp(-100r)$$
 (3)

where r is the shortest euclidean distance from an (x,y,z) point to the cow's surface.

Question: can we use Random Walk Metropolis to sample from this density?

Example Random Walk Metropolis: cow revisited

The problem of tuning the step size in Random Walk Metropolis

The width of the jumping kernel $\theta_{t+1} \sim J(\theta_{t+1}|\theta_t)$ is a free parameter that needs to be specified.

Choosing an optimal value for this tuning parameter is essential for efficient sampling:

- Too small \implies the sampler takes a long time to find the typical set (area where most of probability mass lies).
- Too large \implies the sampler finds the typical set quickly but takes a long time to explore it.

Step size: too small

Step size: too big

Step size: just right

Autocorrelation across samplers

- Calculate autocorrelation for one of the dimensions of the previous simulations.
- Compare with autocorrelation from an independent sampler.

Autocorrelation of different step sizes

Shifting from independent to dependent posterior sampling

Ideally we want to use the powerful WLLN: For $X_i \stackrel{i.i.d}{\sim} f(X)$.

$$\lim_{n \to \infty} \frac{X_1 + X_2 + \dots + X_n}{n} = \operatorname{E}[X]$$
(4)

To evaluate posterior integrals like:

$$\overline{X}_n \approx \operatorname{E}[X] = \int\limits_X x f(x) \mathrm{d}x \tag{5}$$

Using dependent sampling to evaluate integrals

- However *independent* sampling from the posterior is *not* generally possible.
- \implies switch to *dependent* sampling.
- And use a less powerful convergence property: For $X_t = \rho X_{t-1} + \epsilon_t$, and $|\rho| < 1$ where ρ measures autocorrelation in sampler.

$$\lim_{t \to \infty} \frac{X_1 + X_2 + \dots + X_n}{t} = \operatorname{E}[X]$$
(6)

 The rate of convergence for a dependent sequence like this is slower than for the weak law of large numbers ⇒ rate of convergence slows as ρ ↑ but is always slower than an independent sampler. Effective sample size: quantifying the cost of dependent sampling

Intuitively each incremental dependent sample conveys **less information** than an independent sampler.

 \implies quantify this "cost" with the concept of an "effective sample size".

Defined as:

"The equivalent number of samples for an independent sampler".

Question: how should we design such a metric?

As the dependence $\rho\uparrow$ the incremental information conveyed by each sample \downarrow

 \implies design a measure of effective sample size that reflects this:

$$ESS(\theta_i) = \frac{mT}{1 + 2\sum_{\tau=1}^{T_{max}} \rho_{\tau}(\theta_i)}$$
(7)

Where *m* is the number of chains, and *T* is the number of samples *per* chain, and ρ_{τ} is the τ th order autocorrelation for θ_i .

Autocorrelation of different step sizes

Effective sample size of different step sizes

Effective sample size of different step sizes: zoomed

Effective sample size: summary

- There is a cost to dependent sampling ⇒ each incremental sample is less informative than for independent sampling.
- We quantify the cost through the concept of "effective sample size"; the equivalent number of samples for an independent sampler.
- The cost increases along with the dependence of the sampler.
- A good measure of dependence is autocorrelation of a sampler's value.
- Accordingly we create a measure of effective sample size that increases as autocorrelation decreases.

The problem: we know the initial proposal distribution (i.e. the distribution governing each chain's start value) is **not** the posterior. However:

- We know that chains will converge **asymptotically** to the posterior; i.e. $\pi(\theta_t) \rightarrow p(\theta|X)$.
- However when is $\pi(\theta_t) \approx p(\theta|X)$?

The solution:

Use multiple chains starting at random over-dispersed locations in parameter space!

Judging convergence: Bob's bees

Thought experiment:

- Imagine a house of unknown shape.
- We have an unlimited supply of bees, each equipped with a GPS tracker allowing us to accurately monitor their position.
- **Question:** How can we use these to estimate the shape of the house?

Single bee in a house.

Multiple bees in a house released in a single room.

Question: have we converged?

Multiple bees in new house released in highly dispersed rooms.

Multiple bees in new house released in highly dispersed rooms...much later.

Judging convergence: summary

- Determining convergence via a single chain is very dangerous, and fraught with the "curse of hindsight" problem.
- Multiple chains reduces the risk of faux-convergence.
- However if we start all chains in same location (for example a mode) then there is a risk of faux-convergence because chains are unable to widely explore parameter space.
- Therefore it is important to use over-dispersed start locations across all chains.
- No convergence monitoring technique is foolproof.
- More chains the better!

Recap from last lecture

- 2 Start to finish Bayesian inference
 - 3 Metropolis-Hastings
 - 4 Gibbs sampling
 - 5 Hamiltonian Monte Carlo

Science gone to the dogs

- Data from a "Solomon-Wynne" experiment on dogs (described in Bush and Mosteller, 1955).
- Dogs were initially confined to a cage which could be **electrified**.
- Before each shock a light was switched on for 10 seconds.
- To avoid the shock the dogs could jump over a low-lying net that separated the electrified cage from another (less-painful) cage.
- Here we analyse the results of 25 trials across 30 dogs; where $Y_t = 1$ if dog is shocked, and $Y_t = 0$ if shock is avoided in trial t.

Science gone to the dogs: data

Science gone to the dogs: questions

- Did dogs learn more from successful avoidances or from shocks?
- Can a single stochastic learning model fit data from all the dogs?

Suppose the probability of shock on trial *t*:

$$Pr(Y_t = 1|A, B) = (1 - A)^{X_t} (1 - B)^{t - 1 - X_t}$$
(8)

where:

- $X_t = \sum_{t'=1}^{t-1} Y_{t'}$ is the cumulative number of shocks received before trial t.
- 0 ≤ A ≤ 1 measures incremental learning associated with each additional **shock**.
- 0 ≤ B ≤ 1 measures incremental learning associated with each additional avoidance.

Can reformulate the model as a logistic regression:

$$Pr(Y_t = 1 | a, b, c) = logistic [c + aX_t + b(t - 1 - X_t)]$$

where:

- As number of shocks received increases, X_t ↑, the probability of receiving another shock falls; i.e. a < 0.
- As number of shocks avoided increases, (t − 1 − X_t) ↑, the probability of receiving another shock falls; i.e. b < 0.

Assumptions: conditional on (a, b, c, X_t, t) the outcome of the next trial is **independent** and **identically-distributed** across dogs and time \implies

• Likelihood is set as a bernoulli-logit distribution:

$$egin{aligned} & L(a,b,c|Y_t) = \left[\Pr(Y_t = 1|a,b,c)
ight]^{Y_t} \ & imes \left[1 - \Pr(Y_t = 1|a,b,c)
ight]^{1-Y_t} \end{aligned}$$

Where if:

$$\begin{array}{l} - Y_t = 1 \implies L(a,b,c|Y_t = 1) = \Pr(Y_t = 1|a,b,c). \\ - Y_t = 0 \implies L(a,b,c|Y_t = 0) = 1 - \Pr(Y_t = 1|a,b,c). \end{array}$$

Priors are final ingredient of the model.

Unfortunately, no conjugate priors for this likelihood! \implies choose same diffuse prior for all parameters:

- *a* ~ *N*(0, 10).
- $b \sim N(0, 10)$.
- $c \sim N(0, 10)$.

The numerator of Bayes' rule is given by:

Science gone to the dogs: estimating the posterior

Unfortunately:

- The denominator of Bayes' rule is hard to calculate (Mathematica broke when I tried.)
- Further posterior summaries are as difficult.
- The un-normalised posterior is too complex to generate **independent** samples via Rejection sampling (other methods are also problematic.)
- \implies use **dependent** sampling; i.e. MCMC!

Science gone to the dogs: coding Random Walk Metropolis

- Parameters are unconstrained because they can be negative or positive.
- → can use "vanilla" Metropolis (not Metropolis-Hastings).
- Start 12 chains in over-dispersed locations in (a,b,c) space; i.e. select an initial location using a multivariate normal with mean 0.
- Select a new location to which to step also using a multivariate normal:

$$\begin{pmatrix} a'\\b'\\c' \end{pmatrix} \sim N \left[\begin{pmatrix} a\\b\\c \end{pmatrix}, \ \Sigma \right]$$
Science gone to the dogs: coding Random Walk Metropolis

• After proposed (a', b', c') calculate:

$$r = \frac{\mathsf{likelihood}(a', b', c') \times \mathsf{prior}(a', b', c')}{\mathsf{likelihood}(a, b, c) \times \mathsf{prior}(a, b, c)} \tag{9}$$

- Generate $u \sim uniform(0, 1)$.
- If $r > u \implies$ move to (a', b', c').
- Otherwise stay at (a, b, c).

Science gone to the dogs: how long to run the chains?

- We know that chains will converge **asymptotically** to the posterior; i.e. $\pi(\theta_t) \rightarrow p(\theta|X)$.
- However when is $\pi(\theta_t) \approx p(\theta|X)$?
- \implies calculate $\hat{R}!$

Science gone to the dogs: chain convergence

Science gone to the dogs: \hat{R}

Science gone to the dogs: MCMC warm-up

Science gone to the dogs: MCMC warm-up

Science gone to the dogs: posterior summaries

Science gone to the dogs: tentative conclusions

- The magnitude of the "avoidance" effect is lower than the "shock" effect ⇒ dogs learn more from successful avoidances than they do from shocks.
- However, are we right in assuming homogeneous coefficients across all dogs?
- \implies posterior predictive checks!

Science gone to the dogs: posterior predictive distribution

- To do posterior predictive checks we need to sample from the posterior predictive distribution.
- In our examples this is not trivial:
 - First sample (*a*, *b*, *c*) from the posterior distribution (here itself a list of samples).
 - Then sample $Y_{dog,t}$ whether "dog" receives a shock on trial t.

$$Y_{dog,t} \sim \text{bernoulli-logit} \left[c + aX_{dog,t} + b(t - 1 - X_{dog,t})\right]$$
(10)

where $X_{dog,t}$ is the cumulative number of shocks received **before** time *t*.

- Update $X_{dog,t+1} = X_{dog,t} + Y_{dog,t}$.
- Repeat for $Y_{dog,t+1}$.

Science gone to the dogs: real data

A posterior predictive simulation.

Select best and worst dogs.

A posterior predictive simulation.

Simulated data overstates rate of learning for early trials.

Under-prediction for early trials.

Science gone to the dogs: logistic regression appraisal

Posterior predictive checks show:

- The between-dog variation is replicated in simulated datasets ⇒ homogeneous (a, b, c) look fine.
- Simulated data indicates a fraction > 0 of avoided shocks for the first trials ⇒ not seen in real data.
- There are persistent runs of under-prediction and over-prediction in the simulated data ⇒ important because we want model to represent the learning process.

In conclusion: model not terrible but can we do better?

Science gone to the dogs: exponential model introduction

Existing model:

$$Pr(Y_t = 1 | a, b, c) = \text{logistic} [c + aX_t + b(t - 1 - X_t)]$$

New model (same Bernoulli likelihood, just different "link"):

$$Pr(Y_t = 1|a, b) = \exp[aX_t + b(t - 1 - X_t)]$$

 \implies naturally forces $Pr(Y_t = 1 | a, b) = 0.$

Question: how does the new model fare?

A posterior predictive simulation from new model.

Again select best and worst dogs.

Look at early trial performance.

Science gone to the dogs: exponential regression model appraisal

In summary:

- Simpler model with homogeneous parameters (*a*, *b*) also able to account for between-dog variation.
- Automatically means all dogs are shocked on first trial.
- New model does not give runs of over-prediction or under-prediction.
- Interrogate all model's assumptions; a shift from "logistic" to "log" link is subtle but important.

Science gone to the dogs: exponential model results

Science gone to the dogs: exponential model results

Instead show for t = 10 the probability of being shocked on next trial for two different histories.

Science gone to the dogs: exponential model results

And for t = 25 the probability of being shocked on next trial for two different histories.

Recap from last lecture

- 2 Start to finish Bayesian inference
- 3 Metropolis-Hastings
 - 4 Gibbs sampling
- 5 Hamiltonian Monte Carlo

Constrained parameters

- Suppose one of your parameters is constrained.
- As an example consider a likelihood X Binomial(n, θ), where 0 ≤ θ ≤ 1.
- Consider the following jumping (rejection) routine:
 - **1** Propose $\theta_{t+1} \sim N(\theta_t, 0.1)$; i.e. centred on current position.
 - 2 If $\theta_{t+1} < 0$ or $\theta_{t+1} > 1$ reject θ_{t+1} , and propose new $\theta_{t+1} \sim N(\theta_t, 0.1)$.
 - 3 Otherwise accept θ_{t+1} .
- Question: does this stepping routine propose θ_{t+1} evenly across (0,1)?

Constrained parameters

Do 1 million steps (always accepting) of this routine. Answer: no! \implies lower sampling weight nearer 0 or 1!

Constrained parameters: problem and solution

The problem:

- If we use symmetric jumping distribution we get bias away from boundaries.
- For a two-sided boundary we can rectify things by using modular arithmetic; i.e. if we fall off one side we enter the other side.
- For a single boundary this workaround doesn't work.
- An example of a single boundary parameter is σ > 0 for X ~ N(μ, σ).

The solution: use asymmetric proposal distribution!

Asymmetric jumping distribution

Log-normal example.
When we use an asymmetric jumping distribution the ratio from the "vanilla" Metropolis rule:

$$r = \frac{\mathsf{likelihood}(\theta_{t+1}) \times \mathsf{prior}(\theta_{t+1})}{\mathsf{likelihood}(\theta_t) \times \mathsf{prior}(\theta_t)}$$
(11)

Doesn't work! We don't get convergence to the posterior. We need to correct for the asymmetric jumping in r. Instead use:

$$r' = \frac{\mathsf{likelihood}(\theta_{t+1}) \times \mathsf{prior}(\theta_{t+1})}{\mathsf{likelihood}(\theta_t) \times \mathsf{prior}(\theta_t)} \times \frac{J(\theta_t | \theta_{t+1})}{J(\theta_{t+1} | \theta_t)}$$
(12)

Everything else remains the same.

Metropolis-Hastings summary

- For unconstrained parameters we are free to use symmetric jumping kernels.
- However for constrained parameters we are forced to break this symmetry.
- If we use "symmetric" jumping rules (with rejection sampling) ⇒ we get under-sampling near boundaries.
- This under-sampling biases our sampling distribution ≠ posterior.
- Better to use asymmetric jumping kernel with support over "allowed" values.
- To use an asymmetric jumping kernel we must correct the accept/reject ratio r to account for this ⇒ get convergence to posterior.

Recap from last lecture

- 2 Start to finish Bayesian inference
 - 3 Metropolis-Hastings

5 Hamiltonian Monte Carlo

Inefficient exploration of the typical set by Random Walk Metropolis

Inefficient exploration of the typical set by Random Walk Metropolis

Even if the step size for Random Walk Metropolis is optimal \implies suboptimal exploration due to large number of rejected steps.

Defining the Gibbs sampler

For a parameter vector: $\boldsymbol{\theta} = (\theta_1, \theta_2, \theta_3)$:

- Select a random starting location: $(\theta_1^0, \theta_2^0, \theta_3^0)$, along the same lines as for Random Walk Metropolis.
- For each iteration t = 1, ..., T do:
 - Select a random parameter update ordering, for example $(\theta_3, \theta_2, \theta_1)$.
 - Independently sample from the conditional posterior for each parameter in order using the most up-to-date parameters.

Defining the Gibbs sampler

First we sample:

$$\theta_3^1 \sim p(\theta_3 | \theta_2^0, \theta_1^0) \tag{13}$$

Then conditional on freshly-sampled θ_3^1 :

$$\theta_2^1 \sim \rho(\theta_2 | \theta_1^0, \theta_3^1) \tag{14}$$

Then conditional on freshly-sampled θ_3^1 and θ_2^1 :

$$\theta_1^1 \sim \rho(\theta_2 | \theta_2^1, \theta_3^1) \tag{15}$$

Defining the Gibbs sampler

Important: in Gibbs sampling there is no rejection of steps \implies unlike Random Walk Metropolis!

One of the reasons Gibbs can be more efficient.

Example application of Gibbs sampling: speed of motion of neighbouring birds in a flock

Suppose we record the speed of bird A (v_A) and bird B (v_B) in a flock along a particular axis.

Based on observations we find that the joint posterior distribution over speeds is a multivariate normal distribution:

$$\begin{pmatrix} v_A \\ v_B \end{pmatrix} \sim N \begin{bmatrix} \begin{pmatrix} v_0 \\ v_0 \end{pmatrix}, & \begin{pmatrix} 1 & \rho \\ \rho & 1 \end{bmatrix}$$

Of course here we have an analytic expression for the posterior distribution, but this example illustrates how the method works for more general problems. Example application of Gibbs sampling: speed of motion of neighbouring birds in a flock

Finding the conditional distributions

In most circumstances we cannot find the conditional distributions however here it is possible. If we knew v_B :

$$v_A \sim N \left(v_0 + \rho (v_B - v_0), 1 - \rho^2 \right)$$
 (16)

Alternatively, if we knew v_A :

$$v_B \sim N \left(v_0 + \rho (v_A - v_0), 1 - \rho^2 \right)$$
 (17)

Use Gibbs sampling to conditionally sample: $v_A|v_B$ then $v_B|v_A$. **Remember:** in Gibbs sampling we accept **all** steps unlike Random Walk Metropolis. Gibbs sampling the posterior distribution over birds' speeds

Comparing Random Walk Metropolis with Gibbs

Highly correlated parameters: problems with Random Walk Metropolis and Gibbs

- Gibbs performs well on this simple problem.
- However if we increase the posterior correlation between parameters, how does each sampler fare?

Highly correlated parameters: both poor at finding the typical set

Highly correlated parameters: also both poor at exploring the typical set

Other problems with Gibbs

- Requires that the conditional distributions can be derived and sampled from.
- Relies on us "knowing" a reasonable amount of the maths behind each problem.
- Maths is hard and we would like to avoid it if possible!

Often we can only sample from the conditional distributions for a few parameters \implies use Random Walk Metropolis for others (essentially the method used by BUGS and JAGS.)

Gibbs sampling: summary

- Gibbs sampling works by cycling through each parameter dimension, and sampling from the distribution conditional on all other parameters.
- (If "joint-conditional" distributions of the form $p(\theta_1, \theta_2 | \theta_3)$ can be sampled, then this is a more efficient form of Gibbs.)
- Depends on us knowing the conditional distribution for each parameter ⇒ in majority of circumstances not possible.
- Can be more efficient than Random Walk Metropolis but not a panacea.

Gibbs sampling: summary

"If I had a nickel for every time someone had asked for help with slowly converging MCMC and the answer had been to stop using Gibbs, I would be rich."

- William Shakespeare / Charles Geyer.

Recap from last lecture

- 2 Start to finish Bayesian inference
 - 3 Metropolis-Hastings
 - 4 Gibbs sampling
- 5 Hamiltonian Monte Carlo

Random Walk Metropolis

Answer: both Random Walk Metropolis and Gibbs ignore the posterior geometry!

What we would prefer is movements along diagonal.

HMC

Enter the third murderer: Hamiltonian Monte Carlo

Introduction to Hamiltonian Monte Carlo

- Assume a space related to posterior space (more on this next) can be thought of as a landscape.
- Imagine an ice puck moving over the frictionless surface of this terrain.
- At defined time points we measure the location of the puck, and instantaneously give the puck a shove in a random direction.
- The locations traced out by the puck represent proposed steps from our sampler.
- Based on the height of the posterior and momentum of the puck we accept/reject steps.

Why does this physical analogy help us?

Why does this physical analogy help us?

- Allow the potential energy of the puck to be determined partly by the posterior density.
- ⇒ puck will move in the "natural" directions dictated by the posterior geometry.
- And will visit areas of low NLP \implies high posterior density.

An introduction to Hamiltonian Monte Carlo

Questions we need to answer:

- What is the space over which the puck slides?
- e How do we solve for the motion of the puck?
- I How should we "shove" the puck?
- What is our new accept/reject rule?

The space of HMC: physical analogy made concrete

- In statistical mechanics/information theory we explore systems in thermal equilibrium whose energy "state" cannot be directly observed.
- Instead we associate a probability with each energy level, *E*:

$$p(E) \propto exp(-rac{E}{T})$$
 (18)

where T is the "temperature" of the system.

- Note to physicists: I have assumed units where $k_B = 1$.
- In HMC we convert our statistical problem into a physical one, by assuming the "puck" has energy that is determined partly by the posterior density.

Assume that our ice puck has a location θ and momentum k, with an associated energy state $E(\theta, k)$. If we assume T = 1 the probability distribution over states:

$$p(\theta, k) \propto exp(-E(\theta, k))$$
 (19)

Where the energy is the sum of:

The Hamiltonian

Typically use the notation H() = E() because in classical mechanics the total energy of the system is known as the *Hamiltonian*.

For the kinetic energy in q dimensions we use (mass assumed to be 1):

$$KE(k) = \sum_{i=1}^{q} \frac{k_i^2}{2}$$
 (21)

For the potential energy we use the **negative** log of the un-normalised posterior:

$$U(\theta) = -\log\left(p(X|\theta)p(\theta)\right) \tag{22}$$

$$U(\theta) = -\log\left(p(X|\theta)p(\theta)\right) \tag{23}$$

We choose this energy so that $p(X|\theta)p(\theta) = exp(-U(\theta))$; i.e. a probability is the negative exponential of an energy. Here we call $U(\theta)$ negative log posterior space (NLP).

- Essentially the inverse of posterior space, so that lows (highs) in NLP space correspond to highs (lows) in posterior space.
- Simulate the motion of the puck under this potential.

Classical mechanics tells us that the position and momentum of the puck evolve according to:

$$\frac{\mathrm{d}\theta_i}{\mathrm{d}t} = \frac{\partial H}{\partial k_i}$$
$$\frac{\mathrm{d}k_i}{\mathrm{d}t} = -\frac{\partial H}{\partial \theta_i}$$

The trouble is these are too difficult to solve exactly in most cases

 \implies use an approximate numerical method (e.g. Leap-Frog symplectic integrator.)

Note: requires us to be able to evaluate derivatives of posterior \implies HMC tricky where cost of evaluating likelihood is high.

How should we "shove" the puck?

At the start of each step we generate a random initial momentum for the puck. For example:

$$k \sim N(0, \Sigma)$$
 (24)

Question: why do we give the puck a non-zero starting momentum?

Answer: to allow it to climb to areas of high NLP \implies low posterior density.

Simulating the puck's motion in NLP space: start with a posterior

Simulating the puck's motion in NLP space: find NLP space

Simulating the puck's motion in NLP space: consider a point in posterior space

The path traced out for 100 different shoves from same distribution

What is our new accept/reject rule?

After a specified length of time we stop simulating the puck and record its:

- Position; i.e. its current value of θ .
- Momentum; i.e. its current value of k.

Both of these feed into an accept/reject rule that ensure that we get asymptotic convergence to the posterior.

HMC: summary

- Both Random Walk Metropolis and Gibbs sampling ignore the posterior geometry when deciding where to step next inefficient exploration of posterior space.
- HMC avoids inefficiency by allowing the next proposal location to be partly determined by the shape of the posterior.
- Explicitly at each step of HMC we simulate the movement of a puck over a frictionless surface that is given an initial "shove".
- Potential energy determined by NLP ⇒ we tend to move to areas of low NLP/high posterior density.
- HMC is more complex in nature than Gibbs or Random Walk Metropolis ⇒ use Stan!

Lecture summary

- MCMC can be used to sample from posteriors where we have no chance of finding exact answers.
- It is essential to start multiple chains in dispersed locations to judge convergence.
- Random Walk Metropolis can be inefficient to explore posterior space.
- Gibbs can be faster than RWM although requires that we can calculate exact conditionals and sample from them
 if often not possible.
- Both RWM and Gibbs struggle with correlated parameters because they ignore posterior geometry when stepping.
- Hamiltonian Monte Carlo accounts for posterior geometry when deciding on steps but is more complex to implement ⇒ use Stan.

Reading list

Only big chunks this week.

- Chapters 11 (basic MCMC) and 12 (advanced MCMC) in "Bayesian data analysis", by Gelman et al. (2014), 3rd edition.
- Chapters 7 (MCMC) and 14 (HMC and Stan) in "Doing Bayesian data analysis", by Kruschke (2015), 2nd edition.
- Chapter 8 (MCMC) in "Statistical Rethinking", by McElreath (2016).
- Chapter 5 (HMC) by Neal, in "Handbook of Markov Chain Monte Carlo", edited by Brooks et al. (2011).

Not sure I understand?

Hamiltonian Monte Carlo.

Hamilton in Monte Carlo.

Derivation of effective sample size measure

Estimate the mean by averaging:

$$\hat{\mu} = \frac{1}{T} \sum_{t=1}^{T} \theta_t \tag{25}$$

Now considering the variance of this:

$$egin{aligned} & \mathsf{Tvar}(\hat{\mu}) = \mathsf{var}(\sum_{t=1}^T heta_t) \ & = \sum_{t=1}^T \mathsf{var}(heta|\mathsf{data}) + \sum_{t=1}^T \sum_{ au \geq 1} \mathsf{cov}(heta_t, heta_{t- au}) \end{aligned}$$

Derivation of effective sample size measure

Now using AR1 process definition across m chains.

$$\lim_{T \to \infty} \textit{mTvar}(\hat{\mu}) = \left(1 + 2\sum_{\tau=1}^{\infty} \rho_{\tau}\right) \textit{var}(\theta|\textit{data})$$

Now defining effective sample size:

$$\lim_{T \to \infty} n_{eff} \operatorname{var}(\hat{\mu}) = \operatorname{var}(\theta | data)$$
(26)

Rearranging:

$$n_{eff} = \frac{mT}{1 + 2\sum_{\tau=1}^{\infty} \rho_{\tau}}$$
(27)