
Lecture 5: modern MCMC algorithms

Ben Lambert1

ben.lambert@some.ox.ac.uk

1Somerville College
University of Oxford

June 7, 2016

Lecture outcomes

By the end of this lecture you should:

1 Understand how dependent sampling via MCMC can be
used to sample from posterior distributions.

2 Grasp how the concept of “effective sample size”
quantifies the information cost of dependent sampling.

3 Understand the basic mechanics and intuition behind
Random Walk Metropolis.

4 Know how the Gibbs sampler works and how it compares
to Random Walk Metropolis.

5 Recognise the underlying problem with Random Walk
Metropolis and Gibbs.

6 Recognise that Hamiltonian Monte Carlo overcomes some
of the problems of Random Walk Metropolis and Gibbs.

Overall course outline

“I know what
inference is.”

“I understand the
 intuition behind
 Bayesian inference.”

“I appreciate the
di�culty of exact
Bayesian inference.”

“I understand
why we need to
do sampling.”

“I know how
modern MCMC
algorithms work,
and how to apply
them.”

“I appreciate
the bene�ts of
hierarchical models.”

“I know how to
critically assess
a statistical
model.”

Lecture
1

Lecture
2

Lecture
3

“I grasp why we
shift from
independent to
dependent
sampling.”

Lecture
4

Lecture
5

Lecture
6

Lecture 7

1 Recap from last lecture

2 Start to finish Bayesian inference

3 Metropolis-Hastings

4 Gibbs sampling

5 Hamiltonian Monte Carlo

What is independent sampling?

Definition:
“A sample drawn from a distribution that does not depend on
any previous samples drawn.”

A common misconception about independent
sampling

Suppose I can write down the pdf for a distribution:

f (x) =
1

9
x2 (1)

where 0 ≤ x ≤ 3 =⇒ a valid probability distribution!

A common misconception about independent
sampling

And we can draw this function...
Question: doesn’t this mean we can automatically sample
from it?

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0.0

0.2

0.4

0.6

0.8

1.0

X

pd
f

A common misconception about independent
sampling

Answer: no!

No inbuilt command in statistical software to sample from
our function.

=⇒ use Rejection sampling.

A common misconception about independent
sampling

Generate (x , y) pairs at random from continuous uniform.

0.0 0.5 1.0 1.5 2.0 2.5 3.0
X

pd
f

A common misconception about independent
sampling

Overlay our distribution’s pdf.

0.0 0.5 1.0 1.5 2.0 2.5 3.0
X

pd
f

A common misconception about independent
sampling

Accept those x samples with a y value below pdf.

0.0 0.5 1.0 1.5 2.0 2.5 3.0
X

pd
f

A common misconception about independent
sampling

Histogram of x samples.

0.0 0.5 1.0 1.5 2.0 2.5 3.0
X

fr
eq
ue
nc
y

What is dependent sampling?

“A sampling algorithm where the next sample
depends on the current value.”

The war of independence

Think of independent samplers as paratroopers.
Dependent samplers (MCMC!) as infantry.

Independent samples as paratroops

Dependent samples as infantry

The winner

Independent troops/sampler! Because:

Their aerial overview gives them a better ability to plan
samples.
They can traverse a terrain more rapidly than ground
troops (dependent sampler).

The Bayesian battle winner

In Bayesian inference =⇒ the posterior distribution is too
complex (aerial overview impossible) to do independent
sampling.
However we can still do dependent sampling!

=⇒ Infantry wins!

Random Walk Metropolis algorithm

Question: how should we step across the terrain of the
posterior to ensure we generate samples from the posterior?

Answer: use Random Walk Metropolis algorithm.

Random Walk Metropolis algorithm: definition

1 Start in a random location θ0 ∈ Θ.
2 For times t = 1...T do:

- Propose a new location using symmetric jumping kernel,
θt+1 ∼ J(θt+1|θt).

- Calculate:

r =
likelihood(θt+1)× prior(θt+1)

likelihood(θt)× prior(θt)
(2)

=⇒ independent of denominator!
- Generate u ∼ uniform(0, 1).
- If r > u we move from θt → θt+1; otherwise we stay at θt .

Defining Random Walk Metropolis

Start with the un-normalised density.

0.0

0.5

1.0

1.5

2.0

2.5

3.0

θ

lik
el
ih
oo
d
×
pr
io
r

Defining Random Walk Metropolis

Select a random starting location.

0.0

0.5

1.0

1.5

2.0

2.5

3.0

θ

lik
el
ih
oo
d
×
pr
io
r

Defining Random Walk Metropolis

Propose a new location using jumping distribution.

0.0

0.5

1.0

1.5

2.0

2.5

3.0

θ

lik
el
ih
oo
d
×
pr
io
r

Defining Random Walk Metropolis

Calculate ratio of likelihood × prior at proposed to current
location, and find r ≈ 0.58.

0.0

0.5

1.0

1.5

2.0

2.5

3.0

θ

lik
el
ih
oo
d
×
pr
io
r

Defining Random Walk Metropolis

Compare r ≈ 0.58 with random real between 0 and 1. For
example suppose we obtain u = 0.823.

0.0

0.5

1.0

1.5

2.0

2.5

3.0

θ

lik
el
ih
oo
d
×
pr
io
r

Defining Random Walk Metropolis

Since r < u we remain at our original location.

0.0

0.5

1.0

1.5

2.0

2.5

3.0

θ

lik
el
ih
oo
d
×
pr
io
r

Defining Random Walk Metropolis

Generate a new proposed step using jumping distribution.

0.0

0.5

1.0

1.5

2.0

2.5

3.0

θ

lik
el
ih
oo
d
×
pr
io
r

Defining Random Walk Metropolis

Calculate ratio of likelihood × prior at proposed to current
location, and find r ≈ 1.75.

0.0

0.5

1.0

1.5

2.0

2.5

3.0

θ

lik
el
ih
oo
d
×
pr
io
r

Defining Random Walk Metropolis

Since r > 1 (maximum possible u) =⇒ we move to new
location.

0.0

0.5

1.0

1.5

2.0

2.5

3.0

θ

lik
el
ih
oo
d
×
pr
io
r

Defining Random Walk Metropolis

Since r > 1 (maximum possible u) =⇒ we move to new
location.

0.0

0.5

1.0

1.5

2.0

2.5

3.0

θ

lik
el
ih
oo
d
×
pr
io
r

Defining Random Walk Metropolis

Propose a new step using jumping distribution.

0.0

0.5

1.0

1.5

2.0

2.5

3.0

θ

lik
el
ih
oo
d
×
pr
io
r

Defining Random Walk Metropolis

Calculate r ≈ 0.75.

0.0

0.5

1.0

1.5

2.0

2.5

3.0

θ

lik
el
ih
oo
d
×
pr
io
r

Defining Random Walk Metropolis

Generate u = 0.278 < r =⇒ we move!

0.0

0.5

1.0

1.5

2.0

2.5

3.0

θ

lik
el
ih
oo
d
×
pr
io
r

Defining Random Walk Metropolis

Generate u = 0.278 < r =⇒ we move!

0.0

0.5

1.0

1.5

2.0

2.5

3.0

θ

lik
el
ih
oo
d
×
pr
io
r

Defining Random Walk Metropolis

Repeat a large number of times.

0.0

0.5

1.0

1.5

2.0

2.5

3.0

θ

lik
el
ih
oo
d
×
pr
io
r

Example Random Walk Metropolis: cow revisited

Question: remember the cow?

Example Random Walk Metropolis: cow revisited

Define a distribution:

p(r) ∝ exp(−100r) (3)

where r is the shortest euclidean distance from an (x,y,z) point
to the cow’s surface.
Question: can we use Random Walk Metropolis to sample
from this density?

Example Random Walk Metropolis: cow revisited

The problem of tuning the step size in Random
Walk Metropolis

The width of the jumping kernel θt+1 ∼ J(θt+1|θt) is a free
parameter that needs to be specified.

Choosing an optimal value for this tuning parameter is essential
for efficient sampling:

Too small =⇒ the sampler takes a long time to find the
typical set (area where most of probability mass lies).

Too large =⇒ the sampler finds the typical set quickly
but takes a long time to explore it.

Step size: too small

Step size: too big

Step size: just right

Autocorrelation across samplers

Calculate autocorrelation for one of the dimensions of the
previous simulations.
Compare with autocorrelation from an independent
sampler.

Autocorrelation of different step sizes

● too small ■ too big

◆ just right ▲ independent

●●●●●●●●●●●●●●●●●●●●●

■ ■

◆

◆

◆

◆
◆
◆◆

◆◆◆◆◆◆◆◆◆◆◆◆◆◆

▲

▲ ▲ ▲ ▲
▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲

0 5 10 15 20

0.0

0.2

0.4

0.6

0.8

1.0

lag

au
to
co
rr
el
at
io
n

Shifting from independent to dependent posterior
sampling

Ideally we want to use the powerful WLLN:

For Xi
i .i .d∼ f (X).

lim
n→∞

X1 + X2 + ...+ Xn

n
= E[X] (4)

To evaluate posterior integrals like:

X n ≈ E[X] =

∫
X

xf (x)dx (5)

Using dependent sampling to evaluate integrals

However independent sampling from the posterior is not
generally possible.

=⇒ switch to dependent sampling.

And use a less powerful convergence property:
For Xt = ρXt−1 + εt , and |ρ| < 1 where ρ measures
autocorrelation in sampler.

lim
t→∞

X1 + X2 + ...+ Xn

t
= E[X] (6)

The rate of convergence for a dependent sequence like this
is slower than for the weak law of large numbers =⇒
rate of convergence slows as ρ ↑ but is always slower than
an independent sampler.

Effective sample size: quantifying the cost of
dependent sampling

Intuitively each incremental dependent sample conveys less
information than an independent sampler.
=⇒ quantify this “cost” with the concept of an “effective

sample size”.

Defined as:
“The equivalent number of samples for an independent
sampler”.
Question: how should we design such a metric?

Effective sample size: designing a metric

As the dependence ρ ↑ the incremental information conveyed
by each sample ↓
=⇒ design a measure of effective sample size that reflects

this:

ESS(θi) =
mT

1 + 2
Tmax∑
τ=1

ρτ (θi)

(7)

Where m is the number of chains, and T is the number of
samples per chain, and ρτ is the τ th order autocorrelation for
θi .

Autocorrelation of different step sizes

● too small ■ too big

◆ just right ▲ independent

●●●●●●●●●●●●●●●●●●●●●

■ ■

◆

◆

◆

◆
◆
◆◆

◆◆◆◆◆◆◆◆◆◆◆◆◆◆

▲

▲ ▲ ▲ ▲
▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲

0 5 10 15 20

0.0

0.2

0.4

0.6

0.8

1.0

lag

au
to
co
rr
el
at
io
n

Effective sample size of different step sizes

too small too big

just right independent

0 200 400 600 800 1000
0

200

400

600

800

1000

sample size

ef
fe
ct
iv
e
sa
m
pl
e
si
ze

Effective sample size of different step sizes: zoomed

too small too big

just right independent

0 200 400 600 800 1000
0

20

40

60

80

100

120

140

sample size

ef
fe
ct
iv
e
sa
m
pl
e
si
ze

Effective sample size: summary

There is a cost to dependent sampling =⇒ each
incremental sample is less informative than for
independent sampling.

We quantify the cost through the concept of “effective
sample size”; the equivalent number of samples for an
independent sampler.

The cost increases along with the dependence of the
sampler.

A good measure of dependence is autocorrelation of a
sampler’s value.

Accordingly we create a measure of effective sample size
that increases as autocorrelation decreases.

Why do we need to monitor convergence?

The problem: we know the initial proposal distribution (i.e.
the distribution governing each chain’s start value) is not the
posterior. However:

We know that chains will converge asymptotically to the
posterior; i.e. π(θt)→ p(θ|X).

However when is π(θt) ≈ p(θ|X)?

The solution:
Use multiple chains starting at random over-dispersed locations
in parameter space!

Judging convergence: Bob’s bees

Thought experiment:

Imagine a house of unknown shape.
We have an unlimited supply of bees, each equipped with
a GPS tracker allowing us to accurately monitor their
position.
Question: How can we use these to estimate the shape of
the house?

Judging convergence

Single bee in a house.

Judging convergence

Multiple bees in a house released in a single room.

Judging convergence

Question: have we converged?

Judging convergence

Multiple bees in new house released in highly dispersed rooms.

Judging convergence

Multiple bees in new house released in highly dispersed
rooms...much later.

Judging convergence: summary

Determining convergence via a single chain is very
dangerous, and fraught with the “curse of hindsight”
problem.

Multiple chains reduces the risk of faux-convergence.

However if we start all chains in same location (for
example a mode) then there is a risk of faux-convergence
because chains are unable to widely explore parameter
space.

Therefore it is important to use over-dispersed start
locations across all chains.

No convergence monitoring technique is foolproof.

More chains the better!

1 Recap from last lecture

2 Start to finish Bayesian inference

3 Metropolis-Hastings

4 Gibbs sampling

5 Hamiltonian Monte Carlo

Science gone to the dogs

Data from a “Solomon-Wynne” experiment on dogs
(described in Bush and Mosteller, 1955).
Dogs were initially confined to a cage which could be
electrified.
Before each shock a light was switched on for 10 seconds.
To avoid the shock the dogs could jump over a low-lying
net that separated the electrified cage from another
(less-painful) cage.
Here we analyse the results of 25 trials across 30 dogs;
where Yt = 1 if dog is shocked, and Yt = 0 if shock is
avoided in trial t.

Science gone to the dogs: data

avoidance

shock

5 10 15 20 25

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

trial

do
g
nu
m
be
r

Science gone to the dogs: questions

Did dogs learn more from successful avoidances or from
shocks?

Can a single stochastic learning model fit data from all the
dogs?

Science gone to the dogs: model

Suppose the probability of shock on trial t:

Pr(Yt = 1|A,B) = (1− A)Xt (1− B)t−1−Xt (8)

where:

Xt =
t−1∑
t′=1

Yt′ is the cumulative number of shocks received

before trial t.

0 ≤ A ≤ 1 measures incremental learning associated with
each additional shock.

0 ≤ B ≤ 1 measures incremental learning associated with
each additional avoidance.

Science gone to the dogs: model

Can reformulate the model as a logistic regression:

Pr(Yt = 1|a, b, c) = logistic [c + aXt + b(t − 1− Xt)]

where:

As number of shocks received increases, Xt ↑, the
probability of receiving another shock falls; i.e. a < 0.

As number of shocks avoided increases, (t − 1− Xt) ↑,
the probability of receiving another shock falls; i.e. b < 0.

Science gone to the dogs: model

00

Xt

lo
gi
st
ic
[..
.+
aX

t
+
]

Science gone to the dogs: model

Assumptions: conditional on (a, b, c ,Xt , t) the outcome of the
next trial is independent and identically-distributed across
dogs and time =⇒

Likelihood is set as a bernoulli-logit distribution:

L(a, b, c |Yt) = [Pr(Yt = 1|a, b, c)]Yt

× [1− Pr(Yt = 1|a, b, c)]1−Yt

Where if:

- Yt = 1 =⇒ L(a, b, c |Yt = 1) = Pr(Yt = 1|a, b, c).
- Yt = 0 =⇒ L(a, b, c |Yt = 0) = 1− Pr(Yt = 1|a, b, c).

Science gone to the dogs: model

Priors are final ingredient of the model.

Unfortunately, no conjugate priors for this likelihood! =⇒
choose same diffuse prior for all parameters:

a ∼ N(0, 10).

b ∼ N(0, 10).

c ∼ N(0, 10).

Science gone to the dogs: model

The numerator of Bayes’ rule is given by:

p(a, b, c |Y) ∝

likelihood b.c. independence︷ ︸︸ ︷∏
dogs

∏
t

bernoulli-logit(a, b, c |Ydog ,t)

× N(|a)N(|b)N(|c)︸ ︷︷ ︸
prior

Science gone to the dogs: estimating the posterior

Unfortunately:

The denominator of Bayes’ rule is hard to calculate
(Mathematica broke when I tried.)

Further posterior summaries are as difficult.

The un-normalised posterior is too complex to generate
independent samples via Rejection sampling (other
methods are also problematic.)

=⇒ use dependent sampling; i.e. MCMC!

Science gone to the dogs: coding Random Walk
Metropolis

Parameters are unconstrained because they can be
negative or positive.

=⇒ can use “vanilla” Metropolis (not
Metropolis-Hastings).

Start 12 chains in over-dispersed locations in (a,b,c)
space; i.e. select an initial location using a multivariate
normal with mean 0.

Select a new location to which to step also using a
multivariate normal:

a′

b′

c ′

 ∼ N

a
b
c

 , Σ

Science gone to the dogs: coding Random Walk
Metropolis

After proposed (a′, b′, c ′) calculate:

r =
likelihood(a′, b′, c ′)× prior(a′, b′, c ′)

likelihood(a, b, c)× prior(a, b, c)
(9)

Generate u ∼ uniform(0, 1).

If r > u =⇒ move to (a′, b′, c ′).

Otherwise stay at (a, b, c).

Science gone to the dogs: how long to run the
chains?

We know that chains will converge asymptotically to the
posterior; i.e. π(θt)→ p(θ|X).

However when is π(θt) ≈ p(θ|X)?

=⇒ calculate R̂!

Science gone to the dogs: chain convergence

0 200 400 600 800 1000

-3

-2

-1

0

1

2

iteration number

a
a - learning effect from shocks

Science gone to the dogs: R̂

a - learning effect from shocks

Science gone to the dogs: MCMC warm-up

0 200 400 600 800 1000

-3

-2

-1

0

1

2

iteration number

a
a - learning effect from shocks

Science gone to the dogs: MCMC warm-up

0 200 400 600 800 1000

-3

-2

-1

0

1

2

iteration number

a
a - learning effect from shocks

discard!

Science gone to the dogs: posterior summaries

a = learning effect of shocks

b = learning effect of avoidances

c = pre-experimental learning

-0.5 0.0 0.5 1.0 1.5 2.0 2.5
0

200

400

600

800

1000

1200

1400

parameter value

fr
eq
ue
nc
y

Science gone to the dogs: tentative conclusions

The magnitude of the “avoidance” effect is lower than the
“shock” effect =⇒ dogs learn more from successful
avoidances than they do from shocks.

However, are we right in assuming homogeneous
coefficients across all dogs?

=⇒ posterior predictive checks!

Science gone to the dogs: posterior predictive
distribution

To do posterior predictive checks we need to sample from
the posterior predictive distribution.

In our examples this is not trivial:

- First sample (a, b, c) from the posterior distribution (here
itself a list of samples).

- Then sample Ydog ,t - whether “dog” receives a shock on
trial t.

Ydog ,t ∼ bernoulli-logit [c + aXdog ,t + b(t − 1− Xdog ,t)]
(10)

where Xdog ,t is the cumulative number of shocks received
before time t.

- Update Xdog ,t+1 = Xdog ,t + Ydog ,t .
- Repeat for Ydog ,t+1.

Science gone to the dogs: real data

avoidance

shock

5 10 15 20 25

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

trial

do
g
nu
m
be
r

Science gone to the dogs: posterior predictive
checks

A posterior predictive simulation.

Science gone to the dogs: posterior predictive
checks

Select best and worst dogs.

Science gone to the dogs: posterior predictive
checks

Cumulate shocks for the best and worst dogs.

stupidest dog

cleverest dog

0 5 10 15 20 25
0

5

10

15

trial

cu
m
ul
at
iv
e
nu
m
be
r
of
sh
oc
ks

Science gone to the dogs: posterior predictive
checks

Versus 10 simulated datasets.

0 5 10 15 20 25
0

5

10

15

trial

cu
m
ul
at
iv
e
nu
m
be
r
of
sh
oc
ks

Science gone to the dogs: posterior predictive
checks

A posterior predictive simulation.

Science gone to the dogs: posterior predictive
checks

Simulated data overstates rate of learning for early trials.

Science gone to the dogs: posterior predictive
checks

Fraction of dogs shocked by trial number for real data.

0 5 10 15 20 25
0.0

0.2

0.4

0.6

0.8

1.0

trial

fr
ac
tio
n
of
sh
oc
ks

Science gone to the dogs: posterior predictive
checks

Versus 10 simulated datasets.

5 10 15 20 25
0.0

0.2

0.4

0.6

0.8

1.0

trial

fr
ac
tio
n
of
sh
oc
ks

Science gone to the dogs: posterior predictive
checks

Under-prediction for early trials.

5 10 15 20 25
0.0

0.2

0.4

0.6

0.8

1.0

trial

fr
ac
tio
n
of
sh
oc
ks

Science gone to the dogs: posterior predictive
checks

Some over-prediction for trials 5-10.

5 10 15 20 25
0.0

0.2

0.4

0.6

0.8

1.0

trial

fr
ac
tio
n
of
sh
oc
ks

Science gone to the dogs: logistic regression
appraisal

Posterior predictive checks show:

The between-dog variation is replicated in simulated
datasets =⇒ homogeneous (a, b, c) look fine.

Simulated data indicates a fraction > 0 of avoided shocks
for the first trials =⇒ not seen in real data.

There are persistent runs of under-prediction and
over-prediction in the simulated data =⇒ important
because we want model to represent the learning process.

In conclusion: model not terrible but can we do better?

Science gone to the dogs: exponential model
introduction

Existing model:

Pr(Yt = 1|a, b, c) = logistic [c + aXt + b(t − 1− Xt)]

New model (same Bernoulli likelihood, just different “link”):

Pr(Yt = 1|a, b) = exp [aXt + b(t − 1− Xt)]

=⇒ naturally forces Pr(Yt = 1|a, b) = 0.

Question: how does the new model fare?

Science gone to the dogs: posterior predictive
checks for exponential model

A posterior predictive simulation from new model.

Science gone to the dogs: posterior predictive
checks for exponential model

Again select best and worst dogs.

Science gone to the dogs: posterior predictive
checks for exponential model

Still good.

0 5 10 15 20 25
0

5

10

15

trial

cu
m
ul
at
iv
e
nu
m
be
r
of
sh
oc
ks

Science gone to the dogs: posterior predictive
checks for exponential model

Look at early trial performance.

Science gone to the dogs: posterior predictive
checks for exponential model

Much better.

5 10 15 20 25
0.0

0.2

0.4

0.6

0.8

1.0

trial

fr
ac
tio
n
of
sh
oc
ks

Science gone to the dogs: exponential regression
model appraisal

In summary:

Simpler model with homogeneous parameters (a, b) also
able to account for between-dog variation.

Automatically means all dogs are shocked on first trial.

New model does not give runs of over-prediction or
under-prediction.

Interrogate all model’s assumptions; a shift from “logistic”
to “log” link is subtle but important.

Science gone to the dogs: exponential model
results

a = learning effect of shocks

b = learning effect of avoidances

-0.30 -0.25 -0.20 -0.15 -0.10 -0.05
0

100

200

300

400

500

600

parameter value

fr
eq
ue
nc
y

Science gone to the dogs: exponential model
results

Instead show for t = 10 the probability of being shocked on
next trial for two different histories.

8/10 shocks

3/10 shocks

0.10 0.15 0.20 0.25 0.30 0.35
0

50

100

150

200

250

300

350

probability shocked on next trial

fr
eq
ue
nc
y

Science gone to the dogs: exponential model
results

And for t = 25 the probability of being shocked on next trial
for two different histories.

20/25 shocks

8/25 shocks

0.00 0.02 0.04 0.06
0

200

400

600

800

1000

1200

probability shocked on next trial

fr
eq
ue
nc
y

1 Recap from last lecture

2 Start to finish Bayesian inference

3 Metropolis-Hastings

4 Gibbs sampling

5 Hamiltonian Monte Carlo

Constrained parameters

Suppose one of your parameters is constrained.

As an example consider a likelihood X Binomial(n, θ),
where 0 ≤ θ ≤ 1.

Consider the following jumping (rejection) routine:

1 Propose θt+1 ∼ N(θt , 0.1); i.e. centred on current position.
2 If θt+1 < 0 or θt+1 > 1 reject θt+1, and propose new
θt+1 ∼ N(θt , 0.1).

3 Otherwise accept θt+1.

Question: does this stepping routine propose θt+1 evenly
across (0,1)?

Constrained parameters

Do 1 million steps (always accepting) of this routine. Answer:
no! =⇒ lower sampling weight nearer 0 or 1!

0.0 0.2 0.4 0.6 0.8 1.0
0

10000

20000

30000

40000

50000

θ

fr
eq
ue
nc
y

Constrained parameters: problem and solution

The problem:

If we use symmetric jumping distribution we get bias away
from boundaries.

For a two-sided boundary we can rectify things by using
modular arithmetic; i.e. if we fall off one side we enter the
other side.

For a single boundary this workaround doesn’t work.

An example of a single boundary parameter is σ > 0 for
X ∼ N(µ, σ).

The solution: use asymmetric proposal distribution!

Asymmetric jumping distribution

Log-normal example.

Metropolis-Hastings

When we use an asymmetric jumping distribution the ratio
from the “vanilla” Metropolis rule:

r =
likelihood(θt+1)× prior(θt+1)

likelihood(θt)× prior(θt)
(11)

Doesn’t work! We don’t get convergence to the posterior.
We need to correct for the asymmetric jumping in r . Instead
use:

r ′ =
likelihood(θt+1)× prior(θt+1)

likelihood(θt)× prior(θt)
× J(θt |θt+1)

J(θt+1|θt)
(12)

Everything else remains the same.

Metropolis-Hastings summary

For unconstrained parameters we are free to use
symmetric jumping kernels.

However for constrained parameters we are forced to break
this symmetry.

If we use “symmetric” jumping rules (with rejection
sampling) =⇒ we get under-sampling near boundaries.

This under-sampling biases our sampling distribution 6=
posterior.

Better to use asymmetric jumping kernel with support
over “allowed” values.

To use an asymmetric jumping kernel we must correct the
accept/reject ratio r to account for this =⇒ get
convergence to posterior.

1 Recap from last lecture

2 Start to finish Bayesian inference

3 Metropolis-Hastings

4 Gibbs sampling

5 Hamiltonian Monte Carlo

Inefficient exploration of the typical set by Random
Walk Metropolis

Inefficient exploration of the typical set by Random
Walk Metropolis

Even if the step size for Random Walk Metropolis is optimal

=⇒ suboptimal exploration due to large number of rejected
steps.

Defining the Gibbs sampler

For a parameter vector: θ = (θ1, θ2, θ3):

Select a random starting location: (θ01, θ
0
2, θ

0
3), along the

same lines as for Random Walk Metropolis.

For each iteration t = 1, ...,T do:
1 Select a random parameter update ordering, for example

(θ3, θ2, θ1).
2 Independently sample from the conditional posterior for

each parameter in order using the most up-to-date
parameters.

Defining the Gibbs sampler

First we sample:

θ13 ∼ p(θ3|θ02, θ01) (13)

Then conditional on freshly-sampled θ13:

θ12 ∼ p(θ2|θ01, θ13) (14)

Then conditional on freshly-sampled θ13 and θ12:

θ11 ∼ p(θ2|θ12, θ13) (15)

Defining the Gibbs sampler

Important: in Gibbs sampling there is no rejection of steps
=⇒ unlike Random Walk Metropolis!

One of the reasons Gibbs can be more efficient.

Example application of Gibbs sampling: speed of
motion of neighbouring birds in a flock

Suppose we record the speed of bird A (vA) and bird B (vB) in
a flock along a particular axis.

Based on observations we find that the joint posterior
distribution over speeds is a multivariate normal distribution:

(
vA

vB

)
∼ N

[(
v0
v0

)
,

(
1 ρ
ρ 1

)]
Of course here we have an analytic expression for the posterior
distribution, but this example illustrates how the method works
for more general problems.

Example application of Gibbs sampling: speed of
motion of neighbouring birds in a flock

v0

v0

speed of bird A

sp
ee
d
of
bi
rd
B

Finding the conditional distributions

In most circumstances we cannot find the conditional
distributions however here it is possible.
If we knew vB :

vA ∼ N
(
v0 + ρ(vB − v0), 1− ρ2

)
(16)

Alternatively, if we knew vA:

vB ∼ N
(
v0 + ρ(vA − v0), 1− ρ2

)
(17)

Use Gibbs sampling to conditionally sample: vA|vB then vB |vA.
Remember: in Gibbs sampling we accept all steps unlike
Random Walk Metropolis.

Gibbs sampling the posterior distribution over
birds’ speeds

Comparing Random Walk Metropolis with Gibbs

Highly correlated parameters: problems with
Random Walk Metropolis and Gibbs

Gibbs performs well on this simple problem.

However if we increase the posterior correlation between
parameters, how does each sampler fare?

Highly correlated parameters: both poor at finding
the typical set

Highly correlated parameters: also both poor at
exploring the typical set

Other problems with Gibbs

Requires that the conditional distributions can be derived
and sampled from.

Relies on us “knowing” a reasonable amount of the maths
behind each problem.

Maths is hard and we would like to avoid it if possible!

Often we can only sample from the conditional distributions for
a few parameters =⇒ use Random Walk Metropolis for others

(essentially the method used by BUGS and JAGS.)

Gibbs sampling: summary

Gibbs sampling works by cycling through each parameter
dimension, and sampling from the distribution conditional
on all other parameters.

(If “joint-conditional” distributions of the form p(θ1, θ2|θ3)
can be sampled, then this is a more efficient form of
Gibbs.)

Depends on us knowing the conditional distribution for
each parameter =⇒ in majority of circumstances not
possible.

Can be more efficient than Random Walk Metropolis but
not a panacea.

Gibbs sampling: summary

“If I had a nickel for every time someone had asked for help
with slowly converging MCMC and the answer had been to
stop using Gibbs, I would be rich.”

— William Shakespeare / Charles Geyer.

1 Recap from last lecture

2 Start to finish Bayesian inference

3 Metropolis-Hastings

4 Gibbs sampling

5 Hamiltonian Monte Carlo

What are the problems with Random Walk
Metropolis and Gibbs?

Random Walk Metropolis

What are the problems with Random Walk
Metropolis and Gibbs?

Gibbs

What are the problems with Random Walk
Metropolis and Gibbs?

Answer: both Random Walk Metropolis and Gibbs ignore the
posterior geometry!

What are the problems with Random Walk
Metropolis and Gibbs?

What we would prefer is movements along diagonal.

HMC

Enter the third murderer: Hamiltonian Monte Carlo

Introduction to Hamiltonian Monte Carlo

Assume a space related to posterior space (more on this
next) can be thought of as a landscape.

Imagine an ice puck moving over the frictionless surface of
this terrain.

At defined time points we measure the location of the
puck, and instantaneously give the puck a shove in a
random direction.

The locations traced out by the puck represent proposed
steps from our sampler.

Based on the height of the posterior and momentum of
the puck we accept/reject steps.

Why does this physical analogy help us?

N
LP
sp
ac
e

Po
ste
rior

spa
ce

Why does this physical analogy help us?

Allow the potential energy of the puck to be determined
partly by the posterior density.

=⇒ puck will move in the “natural” directions dictated
by the posterior geometry.

And will visit areas of low NLP =⇒ high posterior
density.

An introduction to Hamiltonian Monte Carlo

Questions we need to answer:

1 What is the space over which the puck slides?

2 How do we solve for the motion of the puck?

3 How should we “shove” the puck?

4 What is our new accept/reject rule?

The space of HMC: physical analogy made concrete

In statistical mechanics/information theory we explore
systems in thermal equilibrium whose energy “state”
cannot be directly observed.

Instead we associate a probability with each energy level,
E :

p(E) ∝ exp(−E

T
) (18)

where T is the “temperature” of the system.

Note to physicists: I have assumed units where kB = 1.

In HMC we convert our statistical problem into a physical
one, by assuming the “puck” has energy that is
determined partly by the posterior density.

The space of HMC: physical analogy made concrete

Assume that our ice puck has a location θ and momentum k ,
with an associated energy state E (θ, k). If we assume T = 1
the probability distribution over states:

p(θ, k) ∝ exp(−E (θ, k)) (19)

Where the energy is the sum of:

E (θ, k) = U(θ)︸︷︷︸
potential energy

+ KE (k)︸ ︷︷ ︸
kinetic energy

(20)

The Hamiltonian

Typically use the notation H() = E () because in classical
mechanics the total energy of the system is known as the
Hamiltonian.

For the kinetic energy in q dimensions we use (mass assumed
to be 1):

KE (k) =

q∑
i=1

k2i
2

(21)

For the potential energy we use the negative log of the
un-normalised posterior:

U(θ) = −log (p(X |θ)p(θ)) (22)

What is the space over which the puck slides?

U(θ) = −log (p(X |θ)p(θ)) (23)

We choose this energy so that p(X |θ)p(θ) = exp(−U(θ)); i.e.
a probability is the negative exponential of an energy.
Here we call U(θ) negative log posterior space (NLP).

Essentially the inverse of posterior space, so that lows
(highs) in NLP space correspond to highs (lows) in
posterior space.

Simulate the motion of the puck under this potential.

How do we solve for the motion of the puck?

Classical mechanics tells us that the position and momentum
of the puck evolve according to:

dθi

dt
=

∂H

∂ki

dki

dt
= −∂H

∂θi

The trouble is these are too difficult to solve exactly in most
cases
=⇒ use an approximate numerical method (e.g. Leap-Frog

symplectic integrator.)
Note: requires us to be able to evaluate derivatives of posterior
=⇒ HMC tricky where cost of evaluating likelihood is high.

How should we “shove” the puck?

At the start of each step we generate a random initial
momentum for the puck. For example:

k ∼ N(0,Σ) (24)

Question: why do we give the puck a non-zero starting
momentum?

Answer: to allow it to climb to areas of high NLP =⇒ low
posterior density.

Simulating the puck’s motion in NLP space: start
with a posterior

Simulating the puck’s motion in NLP space: find
NLP space

posterior space

NLP space

Simulating the puck’s motion in NLP space:
consider a point in posterior space

posterior space

NLP space

The path traced out for 100 different shoves from
same distribution

What is our new accept/reject rule?

After a specified length of time we stop simulating the puck
and record its:

- Position; i.e. its current value of θ.

- Momentum; i.e. its current value of k.

Both of these feed into an accept/reject rule that ensure that
we get asymptotic convergence to the posterior.

HMC: summary

Both Random Walk Metropolis and Gibbs sampling ignore
the posterior geometry when deciding where to step next
=⇒ inefficient exploration of posterior space.

HMC avoids inefficiency by allowing the next proposal
location to be partly determined by the shape of the
posterior.

Explicitly at each step of HMC we simulate the movement
of a puck over a frictionless surface that is given an initial
“shove”.

Potential energy determined by NLP =⇒ we tend to
move to areas of low NLP/high posterior density.

HMC is more complex in nature than Gibbs or Random
Walk Metropolis =⇒ use Stan!

Lecture summary

MCMC can be used to sample from posteriors where we
have no chance of finding exact answers.

It is essential to start multiple chains in dispersed locations
to judge convergence.

Random Walk Metropolis can be inefficient to explore
posterior space.

Gibbs can be faster than RWM although requires that we
can calculate exact conditionals and sample from them
=⇒ often not possible.

Both RWM and Gibbs struggle with correlated parameters
because they ignore posterior geometry when stepping.

Hamiltonian Monte Carlo accounts for posterior geometry
when deciding on steps but is more complex to implement
=⇒ use Stan.

Reading list

Only big chunks this week.

Chapters 11 (basic MCMC) and 12 (advanced MCMC) in
“Bayesian data analysis”, by Gelman et al. (2014), 3rd
edition.

Chapters 7 (MCMC) and 14 (HMC and Stan) in “Doing
Bayesian data analysis”, by Kruschke (2015), 2nd edition.

Chapter 8 (MCMC) in “Statistical Rethinking”, by
McElreath (2016).

Chapter 5 (HMC) by Neal, in “Handbook of Markov
Chain Monte Carlo”, edited by Brooks et al. (2011).

Not sure I understand?

Hamiltonian Monte Carlo.

N
LP
sp
ac
e

Po
ste
rior

spa
ce

Hamilton in Monte Carlo.

Derivation of effective sample size measure

Estimate the mean by averaging:

µ̂ =
1

T

T∑
t=1

θt (25)

Now considering the variance of this:

Tvar(µ̂) = var(
T∑

t=1

θt)

=
T∑

t=1

var(θ|data) +
T∑

t=1

∑
τ≥1

cov(θt , θt−τ)

Derivation of effective sample size measure

Now using AR1 process definition across m chains.

lim
T→∞

mTvar(µ̂) =

(
1 + 2

∞∑
τ=1

ρτ

)
var(θ|data)

Now defining effective sample size:

lim
T→∞

neff var(µ̂) = var(θ|data) (26)

Rearranging:

neff =
mT

1 + 2
∞∑
τ=1

ρτ

(27)

	Recap from last lecture
	Start to finish Bayesian inference
	Metropolis-Hastings
	Gibbs sampling
	Hamiltonian Monte Carlo

	anm0:
	0.EndLeft:
	0.StepLeft:
	0.PauseLeft:
	0.PlayLeft:
	0.PlayPauseLeft:
	0.PauseRight:
	0.PlayRight:
	0.PlayPauseRight:
	0.StepRight:
	0.EndRight:
	0.Minus:
	0.Reset:
	0.Plus:
	anm1:
	1.EndLeft:
	1.StepLeft:
	1.PauseLeft:
	1.PlayLeft:
	1.PlayPauseLeft:
	1.PauseRight:
	1.PlayRight:
	1.PlayPauseRight:
	1.StepRight:
	1.EndRight:
	1.Minus:
	1.Reset:
	1.Plus:
	anm2:
	2.EndLeft:
	2.StepLeft:
	2.PauseLeft:
	2.PlayLeft:
	2.PlayPauseLeft:
	2.PauseRight:
	2.PlayRight:
	2.PlayPauseRight:
	2.StepRight:
	2.EndRight:
	2.Minus:
	2.Reset:
	2.Plus:
	anm3:
	3.EndLeft:
	3.StepLeft:
	3.PauseLeft:
	3.PlayLeft:
	3.PlayPauseLeft:
	3.PauseRight:
	3.PlayRight:
	3.PlayPauseRight:
	3.StepRight:
	3.EndRight:
	3.Minus:
	3.Reset:
	3.Plus:
	anm4:
	4.EndLeft:
	4.StepLeft:
	4.PauseLeft:
	4.PlayLeft:
	4.PlayPauseLeft:
	4.PauseRight:
	4.PlayRight:
	4.PlayPauseRight:
	4.StepRight:
	4.EndRight:
	4.Minus:
	4.Reset:
	4.Plus:
	anm5:
	5.EndLeft:
	5.StepLeft:
	5.PauseLeft:
	5.PlayLeft:
	5.PlayPauseLeft:
	5.PauseRight:
	5.PlayRight:
	5.PlayPauseRight:
	5.StepRight:
	5.EndRight:
	5.Minus:
	5.Reset:
	5.Plus:
	anm6:
	6.EndLeft:
	6.StepLeft:
	6.PauseLeft:
	6.PlayLeft:
	6.PlayPauseLeft:
	6.PauseRight:
	6.PlayRight:
	6.PlayPauseRight:
	6.StepRight:
	6.EndRight:
	6.Minus:
	6.Reset:
	6.Plus:
	anm7:
	7.EndLeft:
	7.StepLeft:
	7.PauseLeft:
	7.PlayLeft:
	7.PlayPauseLeft:
	7.PauseRight:
	7.PlayRight:
	7.PlayPauseRight:
	7.StepRight:
	7.EndRight:
	7.Minus:
	7.Reset:
	7.Plus:
	anm8:
	8.EndLeft:
	8.StepLeft:
	8.PauseLeft:
	8.PlayLeft:
	8.PlayPauseLeft:
	8.PauseRight:
	8.PlayRight:
	8.PlayPauseRight:
	8.StepRight:
	8.EndRight:
	8.Minus:
	8.Reset:
	8.Plus:
	anm9:
	9.EndLeft:
	9.StepLeft:
	9.PauseLeft:
	9.PlayLeft:
	9.PlayPauseLeft:
	9.PauseRight:
	9.PlayRight:
	9.PlayPauseRight:
	9.StepRight:
	9.EndRight:
	9.Minus:
	9.Reset:
	9.Plus:
	anm10:
	10.EndLeft:
	10.StepLeft:
	10.PauseLeft:
	10.PlayLeft:
	10.PlayPauseLeft:
	10.PauseRight:
	10.PlayRight:
	10.PlayPauseRight:
	10.StepRight:
	10.EndRight:
	10.Minus:
	10.Reset:
	10.Plus:
	anm11:
	11.EndLeft:
	11.StepLeft:
	11.PauseLeft:
	11.PlayLeft:
	11.PlayPauseLeft:
	11.PauseRight:
	11.PlayRight:
	11.PlayPauseRight:
	11.StepRight:
	11.EndRight:
	11.Minus:
	11.Reset:
	11.Plus:
	anm12:
	12.EndLeft:
	12.StepLeft:
	12.PauseLeft:
	12.PlayLeft:
	12.PlayPauseLeft:
	12.PauseRight:
	12.PlayRight:
	12.PlayPauseRight:
	12.StepRight:
	12.EndRight:
	12.Minus:
	12.Reset:
	12.Plus:
	anm13:
	13.EndLeft:
	13.StepLeft:
	13.PauseLeft:
	13.PlayLeft:
	13.PlayPauseLeft:
	13.PauseRight:
	13.PlayRight:
	13.PlayPauseRight:
	13.StepRight:
	13.EndRight:
	13.Minus:
	13.Reset:
	13.Plus:
	anm14:
	14.EndLeft:
	14.StepLeft:
	14.PauseLeft:
	14.PlayLeft:
	14.PlayPauseLeft:
	14.PauseRight:
	14.PlayRight:
	14.PlayPauseRight:
	14.StepRight:
	14.EndRight:
	14.Minus:
	14.Reset:
	14.Plus:
	anm15:
	15.EndLeft:
	15.StepLeft:
	15.PauseLeft:
	15.PlayLeft:
	15.PlayPauseLeft:
	15.PauseRight:
	15.PlayRight:
	15.PlayPauseRight:
	15.StepRight:
	15.EndRight:
	15.Minus:
	15.Reset:
	15.Plus:
	anm16:
	16.EndLeft:
	16.StepLeft:
	16.PauseLeft:
	16.PlayLeft:
	16.PlayPauseLeft:
	16.PauseRight:
	16.PlayRight:
	16.PlayPauseRight:
	16.StepRight:
	16.EndRight:
	16.Minus:
	16.Reset:
	16.Plus:
	anm17:
	17.EndLeft:
	17.StepLeft:
	17.PauseLeft:
	17.PlayLeft:
	17.PlayPauseLeft:
	17.PauseRight:
	17.PlayRight:
	17.PlayPauseRight:
	17.StepRight:
	17.EndRight:
	17.Minus:
	17.Reset:
	17.Plus:
	anm18:
	18.EndLeft:
	18.StepLeft:
	18.PauseLeft:
	18.PlayLeft:
	18.PlayPauseLeft:
	18.PauseRight:
	18.PlayRight:
	18.PlayPauseRight:
	18.StepRight:
	18.EndRight:
	18.Minus:
	18.Reset:
	18.Plus:
	anm19:
	19.EndLeft:
	19.StepLeft:
	19.PauseLeft:
	19.PlayLeft:
	19.PlayPauseLeft:
	19.PauseRight:
	19.PlayRight:
	19.PlayPauseRight:
	19.StepRight:
	19.EndRight:
	19.Minus:
	19.Reset:
	19.Plus:

